Effects of high-affinity inhibitors on partial reactions, charge movements, and conformational States of the Ca2+ transport ATPase (sarco-endoplasmic reticulum Ca2+ ATPase).
نویسندگان
چکیده
The inhibitory effects of thapsigargin, cyclopiazonic acid, and 2,5-di(tert-butyl)hydroquinone, and 1,3-dibromo-2,4,6-tri(methylisothiouronium)benzene on the Ca(2+) ATPase were characterized by comparative measurements of sequential reactions of the catalytic and transport cycle, including biochemical measurements and detection of charge movements within a single cycle. In addition, patterns of ATPase proteolytic digestion with proteinase K were derived to follow conformational changes through the cycle or after inhibitor binding. We find that thapsigargin, cyclopiazonic acid, and 2,5-di(tert-butyl)hydroquinone inhibit Ca(2+) binding and catalytic activation as demonstrated with isotopic tracers and lack of charge movement upon addition of Ca(2+) in the absence of ATP. It has been shown previously that binding of these inhibitors requires the E2 conformational state of the ATPase, obtained in the absence of Ca(2+). We demonstrate here that E2 state conformational features are in fact induced by these inhibitors on the ATPase even in the presence of Ca(2+). The resulting dead-end complex interferes with progress of the catalytic and transport cycle. Inhibition by 1,3-dibromo-2,4,6-tri(methylisothiouronium)benzene, on the other hand, is related to interference with a conformational transition of the phosphorylated intermediate (E1 approximately P . 2Ca(2+) to E2-P . 2Ca(2+) transition), as demonstrated by increased phosphoenzyme levels and absence of bound Ca(2+) translocation upon addition of ATP. This transition includes large movements of ATPase headpiece domains and transmembrane segments, produced through utilization of ATP-free energy as the "conformational work" of the pump. We conclude that the mechanism of high-affinity Ca(2+) ATPase inhibitors is based on global effects on protein conformation that interfere with ATPase cycling.
منابع مشابه
PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps.
PMR1, a P-type ATPase cloned from the yeast Saccharomyces cerevisiae, was previously localized to the Golgi, and shown to be required for normal secretory processes (Antebi, A., and Fink, G.R. (1992) Mol. Biol. Cell 3, 633-654). We provide biochemical evidence that PMR1 is a Ca2+-transporting ATPase in the Golgi, a hitherto unusual location for a Ca2+ pump. As a starting point for structure-fun...
متن کاملAlteration of Expression of Ca2+ Signaling Proteins and Adaptation of Ca2+ Signaling in SERCA2+/- Mouse Parotid Acini
PURPOSE The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), encoded by ATP2A2, is an essential component for G-protein coupled receptor (GPCR)-dependent Ca2+ signaling. However, whether the changes in Ca2+ signaling and Ca2+ signaling proteins in parotid acinar cells are affected by a partial loss of SERCA2 are not known. MATERIALS AND METHODS In SERCA2+/- mouse parotid gland acinar cells, C...
متن کاملCompetition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum.
The binding of vanadate and fluorescein isothiocyanate to the Ca2+-transport ATPase of sarcoplasmic reticulum (EC 3.6.1.3) was analyzed. Monovanadate binds to the Ca2+-transport ATPase at a single high affinity site (site 1), that is presumably related to the binding site for inorganic orthophosphate, and to one of the two sites for decavanadate. Binding of vanadate to this site stabilizes the ...
متن کاملcAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase.
A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies ...
متن کاملBrown adipose tissue Ca2+-ATPase: uncoupled ATP hydrolysis and thermogenic activity.
In this report a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) was identified in rats brown adipose tissue. Electrophoretic analysis of brown fat microssomal protein yields a 110-kDa band that is reactive to SERCA 1 antibody but is not reactive to SERCA 2 antibodies. Nevertheless, the kinetics properties of the brown fat SERCA differ from the skeletal muscle SERCA 1 inasmuch they manifest a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 73 4 شماره
صفحات -
تاریخ انتشار 2008